
Cache-Coherent Accelerators for Persistent Memory
Crash Consistency

Ankit Bhardwaj
University of Utah

Todd Thornley
University of Utah

Vinita Pawar
University of Utah

Reto Achermann
University of British Columbia

Gerd Zellweger
VMware Research

Ryan Stutsman
University of Utah

ABSTRACT
Building persistent memory (PM) data structures is difficult
because crashes interrupt operations, leaving data structures
in an inconsistent state. Solving this requires augmenting
code that modifies PM state to ensure that interrupted op-
erations can be completed or undone. Today, this is done
using careful, hand-crafted code, a compiler pass, or page
faults. We propose a new, easy way to transform volatile data
structure code to work with PM that uses a cache-coherent
accelerator to do this augmentation, and we show that it may
outperform existing approaches for building PM structures.

CCS CONCEPTS
• Hardware→ Memory and dense storage.

KEYWORDS
persistent memory, cache-coherent accelerators
ACM Reference Format:
Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann,
Gerd Zellweger, and Ryan Stutsman. 2022. Cache-Coherent Accel-
erators for Persistent Memory Crash Consistency. In 14th ACM
Workshop on Hot Topics in Storage and File Systems (HotStorage ’22),
June 27–28, 2022, Virtual Event, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3538643.3539752

1 INTRODUCTION
The availability of commodity persistent memory, or PM,
(like Intel Optane DC Persistent Memory) has the potential
to transform computer storage. By enabling direct CPU load
and store access to persistent data structures, applications
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage ’22, June 27–28, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539752

can interact with vast amounts of data in granular patterns
while avoiding costly kernel boundary crossings, data move-
ment, and serialization/deserialization overheads.
Hence, kernel file systems now map PM into processes

to avoid overheads (e.g., Linux DAX), but this forces ap-
plications to handle crash consistency. If a process crashes
while modifying a persistent data structure, its changes may
be incomplete, and it may leave the data structure in an
inconsistent state. Machines with PM support ensure the
durability of dirty cache lines enqueued for write back to
PM at the memory controller (ADR) and now even in CPU
caches (eADR) [28]. However, this merely guarantees that
dirty cache lines are persisted after a crash or power loss;
it does not provide crash consistency guarantees. Processes
must still ensure the crash consistency of their data struc-
tures at application level.

Many past schemes have been developed to provide crash
consistency, but all existing approaches require interposing
on stores to the persistent data structure, cutting into the
direct-access benefit of PM. The standard approach is to
rewrite code from scratch for crash consistency [4, 9, 11,
26, 30] by adding code that appends to a write-ahead log
(WAL) before each store. On crash, the WAL is used to undo
partially-applied operations to recover to a consistent state.
This instrumentation can be automated by using a compiler
to transform standard volatile data structures to support PM,
but the injected logging code and ordering constraints still
add overhead.
Hardware can also interpose on stores. Approaches that

do this generally use page table protections to trigger write
page faults on stores to track modifications [12, 15, 20]. This
is a black-box approach in the sense that it can be used with
unmodified code for volatile data structures. However, this
approach suffers from extreme trap overheads on modern
x86 CPUs (more than 1 µs per trap). It also suffers from
high write amplification since it forces logging at a page
granularity (4 KiB on x86) rather than at the specific size of
the field being mutated in the persistent structure [1].

Our insight is that this interposition can be done today in
hardware with low overhead without modifying host CPUs.

https://doi.org/10.1145/3538643.3539752
https://doi.org/10.1145/3538643.3539752

HotStorage ’22, June 27–28, 2022, Virtual Event, USA A. Bhardwaj et al.

The idea is to use information exposed by CPUs to forth-
coming cache-coherent accelerator devices (e.g., CXL [6]) to
provide crash consistency for applications. In our approach,
a process maps a physical address range exposed by a cache-
coherent persistence accelerator device (or PAX) into its ad-
dress space, and its threads interact with that region using
normal loads and stores as if the region were the persis-
tent structure itself (Figure 1). In turn, the device intercepts
CPU requests for cache lines, and it proxies loads to PM. For
stores, the device buffers modifications to cache lines, and it
performs persistent undo logging before writing mutations
back to PM. On crash, the structure on PM can be recovered
to a consistent snapshot by rolling back partially-applied
operations. To avoid the need for synchronous undo logging
and write back after every operation on PM, operations asyn-
chronously group commit at the device, ensuring processes
need not block to wait for undo log entries to persist before
continuing operation.

We outline how a PAX device would work and our plan to
implement it on a cache-coherent FPGA [5]; we also de-
scribe a software-based prototype of the device that we
have implemented. The device works together with a soft-
ware library (libpax) to transform volatile data structures
into linearizable and persistent data structures (e.g., C++
std::unordered_map) using the PAX to accelerate persis-
tent snapshotting. PAX has several benefits over existing
approaches to crash consistency:
Low Overhead. Loads and stores to PM operate out of CPU
caches; cache misses are directly served by the device with
no CPU traps and often from an on-device high-bandwidth
memory (HBM) cache of PM. Undo logging for crash con-
sistency is done by the device asynchronously for stores.
Black-Box Code Reuse. Existing volatile data structures
can be transformed to be persistent without code changes.
LowWrite Amplification. The device tracks modifica-
tions to the PM via cache-coherence messages, so it can log
at cache line granularity, avoiding the high write amplifica-
tion of page-based approaches for crash consistency.
NoWorking Set Size Limits. Unlike hardware transac-
tional memory and approaches that buffer write sets in
caches or DRAM [14], working set size is not limited by host-
or device-side cache or volatile memory capacity. Dirty
cache lines can be safely written back to PM to make room
for new mutations even in the middle of operations on PM.
Efficient Use of PM Capacity. Despite snapshot seman-
tics, only one copy of the persistent structure should be
kept on PM; approaches [21, 22, 32] that create physical
snapshots hurt the capacity cost of PM by 2× or more.

Why CXL, why now? Some cache-coherent accelerators
already exist (e.g. Intel HARP [10], ETH Zurich’s Enzian [5]),
and augmenting CPU cache coherence to provide similar

Last-Level Cache

L1/L2 Cache L1/L2 Cache

L1/L2 Cache L1/L2 Cache

Host CPU vPM

HBM Cache

Write Back Coordinator

Undo Logger

PAX Device PM
PM Undo Log

A
tom

ic Snapshot

CXL

Figure 1: PAX Design Overview

crash-consistency guarantees have been explored in the
past [8, 14, 23]. However, CXL-based accelerators are po-
sitioned to make PAX realizable soon and practical to use
in real systems. This is because CXL eliminates the fragility
of past approaches that required hardware changes [8, 14,
23, 27, 31] or that were tightly coupled to a specific CPU
generation’s microarchitecture and coherence details [2, 10]
which made at-scale deployment impractical. CXL will allow
PAX to be developed in such a way that it will work across
different CPU architectures and microarchitectures without
requiring changes to CPUs.
Recent work has begun to show the potential of these

types of accelerators for disaggregated and distributed shared
memory [1, 16] and VM migration [2]. Upcoming commod-
ity CXL-enabled hardware will fuel at-scale deployment of
new accelerator hardware and an explosion of use cases in-
cluding PM applications. CXL devices are not yet available,
but, as we will show (§4), it is possible to develop for CXL-
based accelerators today without relying (solely) on software
simulation.

2 BACKGROUND
To illustrate the problem of crash consistency, imagine a sim-
ple persistent hash table. When put(key, value) is called,
several locations must be modified in the table: a key and
value must be stored in a fresh allocation in PM, that alloca-
tion must be linked into the table, and the count of elements
in the table may need to be updated. Regardless of complica-
tions like volatile caches and CPU store buffers, even if all
written data is persisted, consistency will be violated after
restarting if a crash occurs in the middle of these steps.
Write-ahead logging (WAL) is the standard approach to

recovering from crash failures. It underlies persistent pro-
gramming frameworks like Intel’s PMDK, which provide PM
structures like hash tables and more. WAL can use either
redo or undo logging. In redo logging, structure operations
log all locations and values to be updated; once the log en-
tries persist, updates to the structure are applied. On a crash,
missing updates are applied from the log. Similarly, in undo
logging, the existing value stored in a persistent structure
is logged for each location that must be modified. After a
log entry recording the prior value persists, modifications

Cache-Coherent Accelerators for Persistent Memory Crash Consistency HotStorage ’22, June 27–28, 2022, Virtual Event, USA

1 let mut allocator =

HWSnapshotter<MyAllocator>::map_pool("./ht.pool");

2 let persistent_ht = Persistent<HashMap>::new(&allocator);

3 persistent_ht.insert(1, 100);

4 println!("Key 1 = {}", persistent_ht.get(1));

5 persistent_ht.insert(2, 200);

6 persistent_ht.persist();

Listing 1: Example of the PAX programming model in Rust.

are applied directly to the structure. The recovery procedure
applies log entries to revert partially-completed operations.
Unfortunately, WAL-based approaches have drawbacks

that cut into the benefits of PM’s direct access model. The
first is that code must be modified to interpose on updates to
add logging, either by hand (like those provided by PMDK)
or by using a compiler to inject code [3, 17]. Hence, creat-
ing correct, crash-safe persistent structures is a task left to
experts, and existing volatile code is hard to recycle.
The second drawback is that logging adds overhead and

many additional stalls to enforce the safe ordering of up-
dates. In all forms of WAL, log entries must be ensured to be
durable before the write back of changes to the structure be-
gins, which requires costly SFENCE stalls. Without nuanced,
structure-specific changes to code, stalls are incurred mul-
tiple times during a single logical operation like put() (log
the allocation of a new key and value, SFENCE, write the new
key and value, SFENCE, log the update of an internal pointer,
SFENCE, update the internal pointer, SFENCE, etc.).

Our insight is that this interposition and these overheads
can be offloaded to emerging cache-coherent accelerators.

3 DESIGN
In PAX users use unmodified code from standard volatile
data structures to create persistent structures with low over-
head. Here, we outline the PAX programming model, its
handling of asynchronous logging and write backs, and its
crash-consistent snapshotting and recovery procedures.

3.1 Programming Model
Listing 1 outlines the PAX programming model and shows
how to use libpax to convert a (Rust) hash table into a per-
sistent variant. libpax coordinates with a PAX device, which
we plan to implement on an attached cache-coherent FPGA
device (Figure 1). The PAX device interposes on accesses
to the data structure, performs the necessary logging, and
handles writing back updates to PM in a way that preserves
crash consistency and snapshot semantics.
PAX Allocator Setup. Like other libraries, the application
starts with a pool file that contains the persistent struc-
ture [11, 22], typically in a DAX-accessible file in PM (Line 1).
libpaxmaps the corresponding vPM region into the address
space of the process, and then it wraps the corresponding

virtual address in an allocator object. The vPM addresses are
marked as cacheable at the device (using CXL.cache seman-
tics; see §4). All application accesses to the structure happen
through those addresses, allowing the device to interpose on
coherence messages for cache lines in vPM.
Data Structure Initialization. Then, the allocator is passed
to a data structure constructor that accepts a custom alloca-
tor (many standard structure constructors do); here, the code
is using an unmodified Rust hash table (Line 2). The allocator
ensures all of the structure’s allocations and accesses target
the vPM region. (If the structure in the pool file needs re-
covery due to an earlier crash, libpax performs the needed
recovery during this step; see §3.4.)
Loads. Line 4 calls the read-only get() method on the data
structure. Loads that miss in CPU caches trigger the host
CPU’s cache home agent to forward a message to the device,
which in turn fetches the corresponding cache line from
the underlying PM and returns it to the CPU. Since vPM
addresses are cacheable, future loads to the same line will hit
in the CPU cache without communicating with the device.
Stores. Calls to insert() (Line 5) mutate state in the per-
sistent hash table. On stores, the CPU’s cache home agent
contacts the device to request the cache line for modifica-
tion. This gives the device a chance to perform undo logging,
knowing that the CPU will soon produce a new value that
must be written back to the structure at the requested ad-
dress. To do this, the device fetches the old version of the
cache line being modified from PM, and it logs the address
and old value of the cache line in a persistent undo log.
Persisting. Finally, by calling persist() on Line 6 the li-
brary instructs the PAX device to persist a crash-consistent
snapshot of the data structure.

3.2 Asynchronous Logging and Write Back
PAX asynchronously logs the old contents of a cache line
to PM whenever a CPU asks to upgrade the cache line to
exclusive mode in order to modify it. Rather than stalling the
CPU while the device does logging, the device immediately
acknowledges CPUs’ upgrade request to modify cache lines
without waiting for the logging to complete. This is safe since
libpax only guarantees durability when a call to persist()
completes.

Generally, the application issues persist() after a batch
of operations, which works as a form of group commit [25].
CPU cores can read and modify cache lines without stalling
for cache flushes or barriers for ordering and durability. In-
stead, the PAX device builds up a set of undo log entries that it
flushes out asynchronously until persist(), making stores
to PM nearly as efficient stores to non-crash-consistent struc-
tures. vPM is cacheable, so most operations are performed
without consulting the device at all. Even for modified cache

HotStorage ’22, June 27–28, 2022, Virtual Event, USA A. Bhardwaj et al.

lines, the device is generally only informed the first time
a cache line is modified after a call to persist(). Also, if
desired, libpax can issue persist() periodically to limit
undo log growth.

3.3 Crash-consistent Snapshotting
PAX guarantees that after recovery the application will al-
ways see vPM in a state that reflects the point in time of
the last call to persist() executed. During recovery, PAX
undoes unpersisted changes with the help of the log. If run
in isolation, persist() ensures that the recovered PM is
an atomic snapshot; it always appears to transition between
successive persisted states atomically. We label each succes-
sive snapshot with an epoch number. The recovered state
of the structure is always represented by the most recently
persisted epoch.

One can think of the PAX as buffering all of the modified
cache lines that should be atomically persisted when the next
epoch finishes. However, solely using this approach has two
problems: 1) the buffer could run out of capacity for modified
cache lines, artificially limiting per-epoch working set size;
and 2) the CPU may be caching modified cache lines that the
device does not have in its buffer.

The device’s asynchronous undo logging is key to solving
both of these issues. The device-generated undo log is di-
vided into epochs; if a crash occurs in the middle of writing
changes to PM, the recovery process restores consistency
by undoing all of the effects in the most recent (and not-yet-
durable) epoch. This allows the device to freely modify PM
during an epoch so long as it can undo partially-applied ef-
fects after a crash. So, the device can proactively write back
a modified cache line to PM so long as its corresponding
undo log entry is durable. This is easy to track since the
undo log becomes durable at a monotonically increasing off-
set. Modified cache lines buffered at the device include the
offset of their corresponding undo log entry, so the device
knows when write back for that cache line is safe. This also
avoids the capacity limitations like those that plague Intel’s
TSX hardware transactional memory [8, 19]; if the device is
overwhelmed with modified cache lines that are part of the
current epoch, it can still evict them and write them back
once they are logged. In fact, the device buffer’s eviction
policy can try to minimize stalls by preferring to evict cache
lines whose undo log entries are already durable.

Write back happens asynchronously as the application per-
forms operations on vPM, even before persist() is called.
Once persist() is called, the device ensures that all write
back completes for all cache lines that the CPU modified
during the epoch. This is done by iterating through each
undo log entry as it persists and writing back any buffered
new value to the corresponding cache line in PM.

However, one challenge is that a CPU may have modified
some cache lines that it never evicted from its caches back
to the device, which is the home of all vPM addresses. On a
store that misses in the host CPU cache, themessage from the
CPU to the device only notifies the device that the CPU will
modify the cache line, not what it will change it to. Hence,
at end of an epoch, the device needs to ensure it has an up-
to-date view of every cache line that the CPU could have
modified. So, when persist() is called, the device iterates
over every address in an undo log entry generated in the
current epoch. For each address, the device triggers a CXL
device-to-host message that is handled by the host CPU’s
memory controller requesting that cache line in shared mode,
which both downgrades the cache line in all host CPU caches
and causes the host CPU memory controller to forward the
up-to-date value of the cache line to the device.

After this step and after all modified cache lines are safely
written back to PM, the device writes the current epoch
number to a special location in the structure’s pool file. This
write (once durable) atomically transitions the structure from
the old epoch’s snapshot to the new epoch’s snapshot and
persist() returns to the application.

3.4 Recovery
After a crash, the application reopens the same pool file
and calls Persistent<T>::new(). libpax reads the epoch
number stored in the pool, then it looks for undo log en-
tries associated with the pool tagged with any later epoch
number. For each such entry, libpax overwrites the corre-
sponding cache line in PM with the value stored in the log
entry. Next, it performs an SFENCE, and initializes the device
and vPM as usual. Finally, it recovers the pool’s allocator
state, and it returns Persistent<T> which internally holds
a pointer of type T to the persistent structure in vPM. From
the application’s perspective, there is no difference between
constructing a new persistent map and recovering one; the
application always recovers at the most recent persistent
snapshot or with a new, empty instance of the structure.

3.5 Multi-threading
PAX requires the data structure code to be thread safe if
multiple threads access the data structure concurrently; it
does not provide concurrency control or transactions over
vPM. Application code must ensure that persist() is only
called when no thread is modifying the data structure, oth-
erwise persisted snapshots may still include partial effects
from ongoing operations.

4 IMPLEMENTATION & PROTOTYPING
We are currently implementing PAX. libpax is written in
Rust; Rust’s ownership semantics and borrow checker help

Cache-Coherent Accelerators for Persistent Memory Crash Consistency HotStorage ’22, June 27–28, 2022, Virtual Event, USA

statically enforce some of the safety properties of PAX. A
C/C++ implementation is also straightforward, especially
since C++’s STL structures accept custommemory allocators.
Our eventual goal is to implement a PAX device on

a CXL 2.0-enabled FPGA where it will implement the
CXL.cache protocol to interpose on coherence messages.
This forces the host CPU cache home agents to forward
snoop data and invalidate requests (SnpData and SnpInv,
CXL 2.0 §3.2.4.3) in vPM. This lets PAX track which cache
lines are being modified by host CPU cores.
On persist(), we plan to generate CXL device-to-host

RdSharedmessages to force the host CPU to downgrade (and
forward the current values of) its dirty cache lines before
write back to PM. This is more efficient than forcing CPUs to
issue CLWBs which are serialized, consume cycles, and cause
complete evictions of cache lines and future cache misses
(though future Intel CPUs promise to improve on this by
simply downgrading cache lines to shared mode on CLWB).
CXL-enabled FPGAs are not yet available, so we are pur-

suing two alternative approaches today.
Cache-Coherent FPGAs. Other cache coherent accelera-
tors can be used instead of a CXL accelerator like Intel’s own
discontinued HARP platform. For our hardware prototype,
we are using an Enzian machine, a research computer with a
Marvell Cavium ThunderX-1 48-core 2 GHz CPU connected
to a Xilinx CVU9P FPGA via 24×10Gb/s lanes [5]. These
lanes connect the ThunderX’s cache-coherence bus to the
FPGA, exposing the information we need to implement PAX.
The coherence messages observed by the FPGA are at a

lower-level than what a CXL-enabled device would receive,
and they are tightly coupled to the ThunderX’s microarchi-
tecture. To address this, our plan is to implement an “adapter”
layer at the FPGA that filters and adapts the ThunderX’s co-
herence messages to match the CXL specification so our
implementation will be immediately portable to commodity
machines when CXL devices arrive.
Enzian’s CPU-to-FPGA coherence message latencies are

higher than what are expected for CXL-attached device; we
explore the impact of accelerator latency on expected per-
formance in the next section.
Software-Simulated CXL Accelerators. Concurrently,
we have also been working on a software-based, reference
PAX implementation that runs on standard Intel CPUs. It
uses a similar adapter layer to try to ensure that the software-
based PAX still receives and reacts to CXL-defined messages.
To use this implementation, a process links against our

PAX library as usual, but it is run via Intel’s Pin [18]. Pin
performs dynamic binary translation on the program, and it
rewrites all loads and stores that target the vPM region. For
each load or store, the rewritten code simulates a CPU cache;
on a cache miss it sends a simulated CXL message to a PAX
process over a shared memory queue. This CXL simulation

(a)

DRAM PM PM via
CXL

PM via
Enzian

0
20
40
60

AM
AT

 [n
s]

(b)

1 8 16 24 32
Threads

0
20
40
60

Th
ro

ug
hp

ut
 [M

op
s] DRAM PM Direct PMDK

Figure 2: AMAT estimates and throughput benchmarks.

layer is independent of PAX; it may be useful more generally
for prototyping CXL-based systems.
The software PAX runs on a separate host CPU core; it

receives these simulated CXL messages and performs the
same logic that we have described for the hardware-based
PAX. Since communication is via shared memory, communi-
cation between program threads can be fast (easily 100 ns or
less). Since persistent memory accesses take 305 ns [33], it is
likely this PAX will be able to simulate realistic access times.
The caveat to that is that Pin must instrument every store
that accesses the vPM region, even if it would have been a
CPU cache hit in the real implementation. Hence, we aren’t
yet sure how well it will perform overall.

5 PERFORMANCE
How will PAX perform compared to hand-crafted persistent
memory structures (like those from PMDK) and compiler-
transformed approaches? Though we don’t have a hardware
PAX implementation today to get a definitive answer, we
can estimate it using a combination of benchmarks, latency
measurements, and public information. Our estimates and
measurements suggest that the performance of off-the-shelf
data structures (std::unordered_map) using PAX may be
similar to or better than hand-crafted PMDK data structures.
AMAT estimates. Our first analysis estimates how average
memory access times (AMAT) would change for a simple
hash table; it shows how much individual loads and stores
would be slowed by adding a PAX between PM and an ap-
plication. In the experiment, we measure cache miss rates
at the L1, L2, and last-level cache running a standard hash
table benchmark that performs get() operations on a single
thread with small 8 B keys and values and a uniform ran-
dom key access distribution on a Cloudlab c6420 [7] (put()
latency is impacted similarly). We combine these miss rates
with access latencies of each level estimated empirically us-
ing the same machine and publicly available information for
Optane DCPMM [33], expected CXL latency [6], and Enzian
coherence latency [5].

Figure 2a compares the estimated AMAT of different lay-
ers and media servicing last-level cache misses. DRAM and
PM are not crash consistent; PM via CXL and PM via Enzian
provide crash consistency. The key takeaway is that crash
consistency for PM via a CXL-based PAX (blue bar) may only

HotStorage ’22, June 27–28, 2022, Virtual Event, USA A. Bhardwaj et al.

add 25% to application-experienced AMAT. This is because
vPM is cacheable; though PAX interposes on PM access, the
CPU caches eliminate most accesses to PAX. End-to-end
application metrics (e.g., throughput) vary in sensitivity to
AMAT between applications, but these results are promis-
ing as standard approaches to crash consistency would have
additional stores and synchronous overheads that PAX elim-
inates.
Finally, our estimate for an Enzian-based PAX suggests

that we can build a prototype PAX today that imposes about
a 2× overhead over an eventual CXL-based implementation.
Throughput benchmark. Figure 2b compares the through-
put of a volatile hash table (from Intel’s TBB [13]) when it
is placed in DRAM, PM directly (not crash consistent), and
PMDK’s TBB-based hash table for a write-only workload. For
32 cores, PM Direct performs ≈2× better than PMDK since
PMDK writes to an undo log before updating the table.

We are optimistic that PAX will match or beat PM Direct
for all workloads; hence, it may beat the hand-crafted PMDK
hash table. This is because, though PAX does undo logging,
its logging is asynchronous, so it provides nearly the perfor-
mance of unsafe, direct PM access. By using high bandwidth
memory (HBM) to cache at a PAX, it may be possible to beat
direct PM performance and approach the performance of
having the structure in volatile DRAM.

5.1 Bottlenecks and Optimizations
PCIe and PM Bandwidth. CXL is based on PCIExpress 5.0,
so CXL-enabled accelerators could support up to 63 GB/s of
full duplex bandwidth. A single CPU socket with an Optane
DC PMDIMMper memory channel peaks at about 40 GB/s of
read bandwidth and 14 GB/s for writes [33]. Workloads that
reach these bandwidths would be rare, since most workloads
will frequently hit in CPU caches. Overall, we expect that
I/O bus bandwidth will not be a primary bottleneck in PAX.
Accelerator Bottlenecks. Host CPUs may collectively gen-
erate hundreds of millions of last-level cache misses per sec-
ond that the PAX device must handle. In our initial Enzian-
based prototype, we expect this to be a substantial bottleneck.
The CVU9P FPGA that runs PAX is clocked at 300 MHz. To
saturate the interconnect between the ThunderX-1 and the
FPGA, PAXwould need to respond to coherence messages on
nearly every clock cycle. We plan to make PAX parallel and
pipelined, but we expect this will still be a bottleneck. Hence,
we expect that designs for other cache-coherent accelerators
that include ASICs for handling coherence messages [10]
would likely outperform our Enzian-based prototype.
Combining with Paging. Recent work suggests that
paging-based approaches for tracking changes to remote
memory suffer both in terms of performance and write am-
plification compared to a PAX-like approach [1]. However,

paging may capture spatial locality well for some work-
loads. PAX must interpose on every last-level cache miss,
but paging-based approaches only incur overhead on the
first access to a page per epoch, which can be amortized for
some applications. Our plan is to compare these approaches
in detail for a variety of applications. We may find that a
combination of the approaches works best. For example, it
is possible for PAX to manage write backs to PM DIMMs
attached to the host CPU memory controller. In such de-
ployment, the application could directly map PM pages as
read-only; on a write page fault, the page could remapped at
read/write through addresses assigned to vPM, letting PAX
track changes to the page at cache line granularity.

6 LOOKING FORWARD
PAX will provide near-native access times to PM structures
with unmodified volatile data structure code with low write
amplification and without hardware changes, stalls for log-
ging, or working set restrictions.

Our work on PAX has already raised interesting questions
that we are exploring. For example, we believe it may be pos-
sible to make persist() fully non-blocking, so that epochs
overlap and threads never stall even during persist(); this
is challenging since we cannot modify CPU caches to re-
tain different cache line versions for epochs. Similarly, we
are extending PAX to efficiently provide linearizability in a
black-box fashion with highly concurrent workloads.

Integrating PAXwith existing and future hardware is inter-
esting since platforms have different capabilities; CXL.mem
can support basic functionality, but it does not have as much
visibility into coherence as CXL.cache, which has less visibil-
ity than Enzian [5]. Hence, it will be interesting to see what
optimizations are possible with each approach.

Finally, different applications can use our techniques e.g.,
to enable efficient transactions within a cluster of machines
by connecting FPGAs over a high-speed network or provid-
ing fault tolerance via remote memory [24, 29].
CXL will be here soon. Beyond coherence, CXL can give

applications a new lens to view and interpose on their own
operations. We believe PAX is exciting since it is an early
step toward algorithms that benefit from exposing cache-
coherence details directly to applications.

ACKNOWLEDGMENTS
We thank the reviewers for their feedback. This material is
based upon work supported by the National Science Founda-
tion under Grant No. CNS-1750558. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

Cache-Coherent Accelerators for Persistent Memory Crash Consistency HotStorage ’22, June 27–28, 2022, Virtual Event, USA

REFERENCES
[1] Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al

Maruf, Onur Mutlu, and Aasheesh Kolli. Rethinking Software Run-
times for Disaggregated Memory. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 79–92, 2021.

[2] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel
Gandhi, Onur Mutlu, and Pratap Subrahmanyam. Project PBerry:
FPGAAcceleration for RemoteMemory. In Proceedings of theWorkshop
on Hot Topics in Operating Systems, pages 127–135, 2019.

[3] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
Leveraging Locks for Non-VolatileMemory Consistency. In Proceedings
of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’14, page 433–452,
New York, NY, USA, 2014.

[4] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making
Persistent Objects Fast and Safe with next-Generation, Non-Volatile
Memories. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), page 105–118, New York, NY, USA, 2011.

[5] David Cock, Abishek Ramdas, Daniel Schwyn,Michael Giardino, Adam
Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa Liccia-
rdello, Kristina Martsenko, Reto Achermann, Gustavo Alonso, and
Timothy Roscoe. Enzian: An Open, General, CPU/FPGA Platform for
Systems Software Research. In Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2022, page 434–451, New York, NY,
USA, 2022.

[6] CXL 2.0 Specification. https://www.computeexpresslink.org/spec-
landing.

[7] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation of
CloudLab. In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 1–14, Renton, WA, July 2019. USENIX Association.

[8] Pradeep Fernando, Irina Calciu, Jayneel Gandhi, Aasheesh Kolli, and
Ada Gavrilovska. Persistence and Synchronization: Friends or Foes?
arXiv preprint arXiv:2012.15731, 2020.

[9] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and
Pratap Subrahmanyam. go-pmem: Native support for programming
persistent memory in go. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 859–872, 2020.

[10] Prabhat K Gupta. Accelerating Datacenter Workloads. In 26th Interna-
tional Conference on Field Programmable Logic and Applications (FPL),
volume 2017, page 20, 2016.

[11] Morteza Hoseinzadeh and Steven Swanson. Corundum: Statically-
Enforced Persistent Memory Safety. In Proceedings of the 26th interna-
tional conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2021.

[12] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. NVthreads: Practical persistence for multi-
threaded applications. In Proceedings of the Twelfth European Confer-
ence on Computer Systems, pages 468–482, 2017.

[13] Advanced HPC Threading: Intel oneAPI Thread Building Blocks.
https://www.intel.com/content/www/us/en/developer/tools/
oneapi/onetbb.html.

[14] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas.
DHTM: Durable Hardware Transactional Memory. In 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA),
pages 452–465, 2018.

[15] Terence Kelly. Persistent Memory Programming on Conventional
Hardware: The persistent memory style of programming can dramati-
cally simplify application software. Queue, 17(4):1–20, 2019.

[16] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill, Marcus
Fontoura, and Ricardo Bianchini. First-generation Memory Disaggre-
gation for Cloud Platforms. arXiv preprint arXiv:2203.00241, 2022.

[17] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H
Noh, and Changhee Jung. iDO: Compiler-directed failure atomicity
for nonvolatile memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–270. IEEE, 2018.

[18] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur
Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim M. Hazelwood. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, pages 190–200. ACM, 2005.

[19] Darko Makreshanski, Justin Levandoski, and Ryan Stutsman. To Lock,
Swap, or Elide: On the Interplay of Hardware Transactional Mem-
ory and Lock-Free Indexing. Proceedings of the VLDB Endowment,
8(11):1298–1309, July 2015.

[20] Leonardo Marmol, Mohammad Chowdhury, and Raju Rangaswami.
LibPM: Simplifying application usage of persistent memory. ACM
Transactions on Storage (TOS), 14(4):1–18, 2018.

[21] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi
Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.
Atomic in-place updates for non-volatile main memories with kamino-
tx. In Proceedings of the Twelfth European Conference on Computer
Systems, pages 499–512, 2017.

[22] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson.
Pronto: Easy and fast persistence for volatile data structures. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
789–806, 2020.

[23] Tri M Nguyen and David Wentzlaff. PiCL: A software-transparent,
persistent cache log for nonvolatile main memory. In 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 507–519. IEEE, 2018.

[24] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin,
Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen
Yang. The RAMCloud Storage System. ACM Trans. Comput. Syst.,
33(3), aug 2015.

[25] Steven Pelley, Thomas F Wenisch, Brian T Gold, and Bill Bridge. Stor-
age management in the NVRAM era. Proceedings of the VLDB Endow-
ment, 7(2):121–132, 2013.

[26] Persistent Memory Devlopment Kit. https://pmem.io/pmdk/.
[27] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,

and Onur Mutiu. ThyNVM: Enabling software-transparent crash con-
sistency in persistent memory systems. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 672–685.
IEEE, 2015.

[28] Steve Scargall. Programming Persistent Memory: A Comprehensive
Guide For Developers. Springer Nature, 2020.

[29] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy Transactions in Multicore In-Memory Databases.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 18–32, 2013.

https://www.computeexpresslink.org/spec-landing
https://www.computeexpresslink.org/spec-landing
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://pmem.io/pmdk/

HotStorage ’22, June 27–28, 2022, Virtual Event, USA A. Bhardwaj et al.

[30] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, page 91–104, New York, NY, USA, 2011.

[31] Ziqi Wang, Chul-Hwan Choo, Michael A Kozuch, Todd C Mowry, Gen-
nady Pekhimenko, Vivek Seshadri, and Dimitrios Skarlatos. NVOver-
lay: Enabling Efficient and Scalable High-Frequency Snapshotting to
NVM. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 498–511. IEEE, 2021.

[32] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Lu-
ján. PMThreads: Persistent Memory Threads Harnessing Versioned
Shadow Copies. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 623–637,
2020.

[33] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. An Empirical Guide to the Behavior and Use of
Scalable Persistent Memory. In 18th USENIX Conference on File and
Storage Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27,
2020, pages 169–182. USENIX Association, 2020.

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Programming Model
	3.2 Asynchronous Logging and Write Back
	3.3 Crash-consistent Snapshotting
	3.4 Recovery
	3.5 Multi-threading

	4 Implementation & Prototyping
	5 Performance
	5.1 Bottlenecks and Optimizations

	6 Looking Forward
	References

