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Abstract
In this paper, we argue that an operating system

structured as a distributed system needs a coordi-
nation and a name service to make OS services
work correctly. While a distributed structure al-
lows applying algorithms from the distributed field,
it also suffers from similar problems like synchro-
nization, naming, distributed locking and coordina-
tion of service instances.

Octopus, our solution to this problem in the con-
text of a real OS, provides an easy-to-use, high-
level, uniform coordination service with events at
reasonable performance. Based on this service, we
describe three real use cases: device management,
OS service registry and boot-up coordination.

1 Introduction
This paper reports on early work to determine the

usefulness of abstracting service dependencies and
synchronization from the services themselves in the
context of an OS for future multicore systems.

Modern OS designs face serious challenges in
the face of hardware trends. First, as core counts
increase, it becomes essential for performance scal-
ability to distribute, partition, or replicate OS state
across cores. In conventional monolithic systems
like Linux or Windows, this is done with per-
processor data structures, whereas recent “multik-
ernel” approaches like fos [15] and Barrelfish [2]
explicitly structure the OS as a distributed system
with no shared state between nodes.

Second, increasing heterogeneity of cores, mem-
ory, and peripherals in a modern computer, plus
growing diversity of hardware platforms, leads to
large quantities of specialized code inside the OS
in the form of drivers, services, resource alloca-
tors, and the like. With the advent of heterogeneous
general-purpose cores, this will only intensify.

These factors lead to OS designs with a large
number of components with complex interdepen-
dencies. Services must be started in an order which
respects their dependencies and, preferably, mini-
mizes startup latency. As devices (and cores) come
and go, drivers must be started up and shut down.
Effective power management requires knowledge
about device dependency: shutting down a USB
controller or PCI bus should only be done if the
dependent devices are safely shut down as well.

Moreover, the OS now has complex synchro-
nization requirements between components: hot-
plug events may involve careful coordination be-
tween PCI managers, ACPI subsystems, and device
drivers, and schedulers and code to route interrupts
may need to wait until all cores on a machine have
successfully started up before proceeding.

In existing systems, resolving these dependen-
cies and implementing synchronization patterns be-
tween OS components and models is typically
hard-coded into the components themselves, and is
a leading factor in OS complexity (and, therefore,
reliability and correctness).

We report on early experience applying tech-
niques devised for modern cluster-based distributed
systems to this problem. We built Octopus, a coor-
dination service for Barrelfish, inspired by facilities
such as Chubby [3] and Zookeeper [8].

We describe the background in the next section,
and in Section 3 we discuss the requirements of
such a service, derive design principles, and present
the design of Octopus. Section 4 presents our ex-
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perience so far, in the form of three cases where the
abstractions provided by Octopus have enabled it to
replace considerably more complex code in the OS:
bootstrapping, device management, and the system
name service. We also briefly present performance
measurements, and conclude in Section 5.

2 Background
Our ideas in this paper are part of a wider trend

to apply ideas from distributed computing to mul-
ticore OS design. Traditionally, data centers have
faced complex coordination problems at the level
of distributed systems on clusters. Chubby [3] and
Zookeeper [8] provide coordination and synchro-
nization for large collections of machines. They
organize information in a hierarchical name space
and export a file system-like API. Zookeeper and
Chubby are used as a multipurpose tool for vari-
ous coordination tasks such as configuration man-
agement, storage, group membership, leader elec-
tion, locking and mutual exclusion. Somewhat
unexpectedly, Chubby also increasingly replaced
DNS as a general-purpose name server internally
at Google. Both systems use state-machine repli-
cation to achieve high availability, using variants of
Paxos [9] for consensus among nodes.

With the increasing demand of fast access to data
at massive scale, key-value stores favor simplic-
ity in terms of data model and query complexity
over strong guarantees such as the ACID proper-
ties. Distributed key-value stores implement a form
of distributed hash table [4, 7], providing eventual
consistency. Redis [17] is one example of a cen-
tralized RAM-based key-value store with optional
master-slave replication and persistency. It aims
to be lightweight and high-throughput, and stores
schema-less data under keys. Redis provides a flex-
ible set of atomic operations on single data items.

Publish-subscribe systems allow flexible interac-
tion in distributed systems and feature three key
ideas [5]. First, space decoupling means that inter-
acting parties do not need to know each other. Sec-
ond, time decoupling means that interacting parties
do not need to be actively participating at the same
time. Finally, synchronization decoupling means
that publishers never block on generating data and
subscribers get asynchronous data events.

In the OS context, D-Bus [6] is an interprocess
communication facility for Linux and other oper-
ating systems which also supports a limited from
of coordination: processes can wait for events from
specific objects, and the D-Bus daemon can start
processes when messages are sent to them.

Our work is implemented in Barrelfish [2]. Bar-
relfish is a multikernel: a distributed architecture
where the OS boots individually on each core. OS
services are distributed over hardware nodes and
state consistency is ensured by explicit messag-
ing. Barrelfish includes a system knowledge base
(SKB) [13], a service based on Constraint Logic
Programming which stores hardware and software
knowledge declaratively. Octopus builds on the
SKB and uses logical unification and reasoning as
part of the coordination service. The result is a flex-
ible key-value store with publish-subscribe patterns
on persistent and transient data.

3 Coordinating an OS
Our coordination service, Octopus, is based on

the interfaces provided by Chubby and Zookeeper
with the goal of facilitating distributed coordination
and event handling while reducing the code com-
plexity involved in programming such functional-
ity. However, the OS environment is somewhat dif-
ferent from a large cluster, and so our requirements
and design principles are somewhat different.

First, at least in medium term, an OS can assume
a reliable interconnect and no single CPU failures.
The code complexity should be as low as possible.
Therefore we settled on a lightweight, centralized
coordination service rather a replicated system.

Second, the service must also be self-contained,
to make coordination of OS boot-up possible. It
should not rely on many other OS services (such as
the file system or network), and should help model
dependencies rather than creating new ones.

Third, information providers and consumers
should be loosely coupled. This can be achieved
by an asynchronous interface with a fast, flexible
and scalable data and query model.

Fourth, the query interface should be non-
blocking. Rather, events should asynchronously
notify clients about data store changes.

Finally, a high-level interface should reduce the
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Figure 1: Octopus: General Architecture
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code complexity involved in synchronization.
While Octopus is strongly integrated with the

rest of Barrelfish, we argue that the ideas it em-
bodies are widely applicable to any OS trying to
manage a complex multicore machine.

3.1 Octopus

Based on these principles, Octopus implements
distributed, named synchronization primitives such
as locks, barriers and semaphores above a key-
value store and associated event delivery system.
Octopus unifies synchronization, name service, and
event handling for the OS. Using a convenient
API, clients benefit from key-value store, data
change events and publish-subscribe events. We
distinguish between transient data in the publish-
subscribe case which are not stored, from key-value
store entries, which remain in RAM during lifetime
of the OS or until they are deleted. The latter we
call persistent, even if no disk is involved.

Octopus abstracts the key-value store behind
high-level record entries, and a query and update
language enables clients to add, query and mod-
ify records. Clients register for events at the record
level. The two advantages of a high-level language
are reduced code complexity and independence of
the implementation. We describe records and the
query language in more detail in section 3.2.

Octopus is built as an native extension to the
SKB [13] as shown in Figure 1. Server functional-
ity is in a library liboctopus_server linked with
the SKB. Clients link to liboctopus which ex-
ports the Octopus API and communicates with the
Octopus service. The liboctopus_parser library
parses query and answer strings on both sides.

3.2 Records and Record Queries

Records are the basic data unit in Octopus.
Clients add records to persistent storage and re-
trieve, modify or delete them. They can also reg-
ister for addition and deletion events on patterns
matching records of interest. Octopus also provides
a publish-subscribe API for records which is simi-
lar but bypasses storage.

3.2.1 Records

Records consist of a name and an optional list of
attribute-value pairs. The syntax is based on JSON
(JavaScript Object Notation) [16], since it is easy
to read and write for humans and machines. The
following example shows a record called hw.pci.

device.1 representing a PCI network card:

hw.pci.device.1 {
bus: 0, device: 1, function: 0,
vendor: 0x8086, device_id: 0x107d,
class: ’C’

}

Sequential records are a special form of records.
Octopus appends a monotonically increasing num-
ber to the name defined by the client. It returns the
new name to the client, allowing clients to create
multiple unique ordered records, and serving as the
basis for synchronization primitives.

3.2.2 Record Queries

Record queries use an extended version of the
record entry syntax, allowing regular expressions
for record names and attribute values and the spe-
cial character ’_’ to match to any name or attribute
value. Constraints on attribute values further spec-
ify whether records are part of the result or not.
Record updates can depend on the currently stored
value, as in SQL’s UPDATE statement.

The following example matches records with any
name but only those with device <= 1, vendor
> 100 and class matching the regular expression
C|X|T belong to the result. An update sets bus to 5,
but only if the current value is 0.

_ { bus: 5, bus == 0, device <= 1,
vendor > 100, class: r’C|X|T’

}
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3.3 Record Store
Whenever the Octopus service receives a set or

del query from a client, it parses the query and per-
forms the respective operation on persistent stor-
age. Octopus stores the attribute-value pair list to
the storage hash table with the record name as key.
For get and update queries, it matches them to the
stored records and returns the result to the client.

If the client is interested in future add or del
events it creates a trigger along with the query and
passes it to Octopus. The client specifies whether
the trigger is persistent and should send an event
whenever the query matches, or whether it should
be automatically removed after the first event.

Octopus stores the trigger to the persistent stor-
age hash table. Because record queries do not need
to specify a fixed name, Octopus generates a trig-
ger ID which serves as the key. Expected attribute-
value pairs and constraints get stored with this ID.

The full record store API of the server is:

(names, err, t_id?) = get_names(q, trg?);
(record, err, t_id?) = get(q, trg?);
(err, record?, t_id?) = set(q, trg?);
(err, t_id?) = del(q, trg?);
(err, t_id?) = exists(q, trg?);

get_names returns an array of record names
matching the query. get returns the first record
to match the query. set inserts a new or updates
an existing record. del deletes a record. exists
is similar to get, but only returns an appropriate
error code. All calls may install a trigger, in which
case the server returns the trigger ID to remove it in
the future. Creating triggers is done as follows:

(trg) = mktrigger(in_case?, send_async,
mode, handler_fn, client_state);

(err) = rmtrigger(t_id);

mktrigger creates and configures a trigger ac-
cording to flags passed by clients. It also installs the
user handler function and user state. rmtrigger
removes the trigger identified by its ID.

3.4 Publish-subscribe
Publish-subscribe in Octopus is similar, but

records are not stored. Subscriptions use the same
record query language and are stored like triggers.
Further API calls allow clients to publish records
and to subscribe to records.

3.5 Synchronization primitives
Octopus implements high-level synchronization

primitives based on records. These are intended to
coordinate distributed applications and are not suit-
able for fine-grained access control among threads.
Our goal is to build synchronization primitives with
few lines of code. Unifying records and change
events provides a useful basis for such primitives:
new clients can query existing state and existing
clients receive change events. Our current function-
ality is based on that in Zookeeper [8]:

Locks: In an approach reminiscient of event-
counts and sequencers [12], acquiring a lock cre-
ates a sequential record using the lock name, agreed
on by the clients. The client owning the record with
the lowest number holds the lock. Other clients is-
sue an exist call on the previous record to their own
and pass a one-time trigger on its deletion. When
the lock holder releases the lock (i.e. deletes the
record), the next waiting client wakes up on the
deletion event. As with eventcounts, no starvation
occurs and the locks are fair in waiting time.

Barriers: Barriers ensure that different tasks
start executing a section simultaneously. Using Oc-
topus, we implemented a double barrier based on
sequential records. Every client entering the bar-
rier creates a sequential record and queries if the
number of records is the expected number of clients
entering the barrier. If so, it creates a special record
indicating that all clients are ready. Otherwise, it
creates a trigger waiting for this special record.

3.6 Implementation
Octopus is implemented as an extension to the

ECLiPSe engine [1] which forms the basis for Bar-
relfish’s SKB. It benefits from ECLiPSe’s logical
unification, backtracking, constraint evaluation and
regular expression facilities, Queries are automati-
cally matched to stored records. This reduces code
complexity for applications and Octopus itself.

Octopus allows searching for records based on
attribute values, and potentially all records need to
be considered. An attribute index remembers all
record names having a given attribute. Thus, Oc-
topus quickly finds all potential matching records.
The index is implemented as skip list [11], which
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behaves similar to a binary tree. Finding triggers or
subscriptions given a record is the opposite prob-
lem. A bitmap index indicates whether a trigger or
subscription ID is relevant, given a record.

4 Early experience
We were motivated to build Octopus by three re-

lated coordination problems in the Barrelfish OS
which were the cause of much complex, duplicated
code and hard-to-find bugs, often timing-related.

4.1 Name service
Services in a distributed system register service

references using a well-known name with a service
registry [10, 14]. Clients resolve them by name, or
more complex attribute-based queries. In a multik-
ernel like Barrelfish, services also export references
and applications are the clients connecting to them.
Octopus allowed us to replace the previous service
registry in Barrelfish with a considerably more ex-
pressive one using records of the form
servicename { iref: <nr>, ... }

where servicename is the well-known name and
<nr> is the internally used reference expected by
Barrelfish’s connection function. Service depen-
dencies are resolved by searching for a specific ser-
vice name and waiting until it appears as a record.

4.2 Device management
We built a new Barrelfish service, dubbed

Kaluga, which is the device manager responsible
for starting the correct driver for each device ap-
pearing in the system. It uses driver mapping in-
formation in the SKB which bind devices to driver
binaries, and registers a trigger for new device
records. Device discovery by components like
ACPI code, PCI drivers, and USB controllers enu-
merate hardware and add device records to Octo-
pus. For each new record, Kaluga receives an event.
It considers the device-driver mappings, stored in
the SKB, and starts the appropriate driver.

The discovery and driver startup process is re-
cursive. For example, the ACPI driver might find
a PCIe root complex. Consequently, Kaluga starts
a PCIe bus driver which enumerates devices under
this root and generates new records. This triggers
Kaluga to start PCIe drivers, such as a PCIe USB

host controller. This driver in turn enumerates the
USB bus and adds further records causing Kaluga
to start USB device drivers, and so on.

4.3 System Bootstrap
Booting an OS is a complex task. Hardware has

to be initialized and exported to clients, drivers and
OS services have to be started. On modern hard-
ware, other CPU cores also need to be started by
the OS. Octopus has proved very useful so far in
simplifying the bootstrap process in Barrelfish, and
our current solution builds on both the name service
and the Kaluga device manager.

In a typical scenario on x86 machines, Barrelfish
startup works as follows: The BIOS starts the boot-
strap core. The bootloader then starts the kernel.
The ACPI flag on Intel x86 cores indicate ACPI
availability. Thus, the boot code adds a device
record for ACPI which causes Kaluga to start the
ACPI driver. ACPI finds cores, I/O APICs and
PCIe root bridges. It adds device records such that
Kaluga can start the appropriate drivers.

Drivers and OS services start running and regis-
ter with the name service. Depending services wait
for required service references before they register
with the name service. This way, the OS boot pro-
cess is well coordinated. The uniform abstraction
of dependencies behind Octopus records and trig-
gers has allowed us to significantly reduce special-
case code in many parts of the OS.

CPU cores beyond the first one are treated the
same as regular devices. Whenever Kaluga receives
a record event for a core (typically from ACPI), it
starts the an appropriate kernel (or “CPU driver” in
Barrelfish parlance) based on the driver database.

4.4 Performance
One goal of Octopus is building synchronization

primitives with few lines of code. Table 1 shows a
functionality breakdown with lines of code1. As
the table shows, barriers, locks, semaphores and
Kaluga need few lines of code. Also Octopus is im-
plemented in relatively few lines of code, because
it benefits from the high-level ECLiPSe language.

We measured the performance of Octopus on a
PC with two dual-core AMD Santa Rosa CPUs run-

1Generated using David A. Wheeler’s SLOCCount
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Table 1: Lines of code
Functionality C Prolog Lex YACC
Octopus 3188 355 150 94
Barriers 102
Locks 87
Semaphores 106
Kaluga 759

Figure 2: Throughput Octopus vs. Redis
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ning at 2.8 GHz. Server and client ran on different
cores on the same package. We used big hash tables
to reduce garbage collection and removed outliers
due to context switches and other effects.

Octopus is similar in implementation to Re-
dis [17], though simpler and less optimized. We
compared the throughput of get calls with 256
byte payload on Redis 2.4.7 running on Linux
2.6.32 pinned to one core using the provided redis

-benchmark program, with Octopus running on
Barrelfish. Figure 2 shows the peak for Redis is
at about 90000 ops/sec and for Octopus around
60000. Scalability is similar. The performance hit
in Octopus is due to ECLiPSe. To compute the
overhead, we run a microbenchmark issuing get

calls to retrieve a specific record out of 1.4 mil-
lion stored records. The overhead of ECLiPSe com-
pared to the overall latency was roughly 80%.

5 Conclusion
To date, Octopus has been a net benefit both in

terms of code complexity (the system is simpler
with it than without it) and functionality. How-
ever, while it has solved some pressing problems
for us, we are only begining to explore its impli-
cations for the rest of the OS, such as the file sys-
tem and power management, to name but two areas

of interest. The key insight we borrow from large-
scale clusters systems is that it is beneficial to sep-
arate coordination from the rest of the system code.
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