
So many performance events, so little time

Gerd Zellweger Denny Lin Timothy Roscoe
Systems Group, Dept. of Computer Science, ETH Zurich, Switzerland

gerd.zellweger@inf.ethz.ch dlin@student.ethz.ch troscoe@inf.ethz.ch

ABSTRACT
Many modern workloads are a heterogeneous mix of parallel
applications running on machines with complex processors
and memory systems. These workloads often interfere with
each other by contending for the limited set of resources in
a machine, leading to performance degradation.

In principle, one can use hardware performance counters
to characterize the root causes of interference inside a mod-
ern machine. However, we show that current facilities in to-
day’s operating systems mean that such an analysis requires
careful consideration of the intricacies of specific hardware
counters, domain knowledge about the applications, and a
deep understanding of the underlying hardware architecture.

In contrast, we present the design of Glatt, which is able
to automatically identify the root causes of interference in
a machine online. Glatt can expose this information to a
runtime or the operating system for predicting better thread
assignments or for dynamically increasing/decreasing paral-
lelism within each runtime.

1. INTRODUCTION
Modern server workloads are often a mix of different ap-

plications, each with their own parallel runtime. Efficiently
scheduling this mix is famously difficult on modern hard-
ware for two reasons: First, today’s complex cache hier-
archies, bus topologies, and CPU architectures lead to sur-
prising interactions that negatively impact the performance
of individual applications. Secondly, many modern applica-
tions rely on runtime systems that make their own schedul-
ing decisions, and each runtime’s view is limited by what
little information an operating system can provide. Conse-
quently, such applications either assume they have the whole
machine to themselves, or at best employ simple heuristics
for dynamically choosing their degree of true parallelism.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

APSys ’16, August 4–5, 2016, Hong Kong, Hong Kong
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4265-0/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2967360.2967375

2008 2009 2010 2011 2012 2013 2014 2015
0

200

400

600

800

1000

1200

1400

1600

1800
Hardware Performance Events

Bonnell

Nehalem

Westmere EP

Westmere EX

SandyBridge

Jaketown

IvyBridge

IvyTown

Silvermont

Haswell

HaswellX

Broadwell

Broadwell DE

Skylake

HW Counters per Core

Figure 1: The number of hardware events (including
subevents) available on different Intel architectures over
time vs. the number of general-purpose hardware counters
available for measuring events (8 per core on current Intel
architectures).

In principle, performance counters provide knowledge re-
garding the state of the machine and can be used to detect
workload interactions that cause inefficient execution. How-
ever, the semantic gap between counter values and observed
performance is large, and the sheer complexity of hardware
instrumentation available on a given machine makes choos-
ing which measurements to take, and interpreting the result-
ing data, a daunting task which must be repeated for each
new processor.

Figure 1 shows the number of monitorable events for sev-
eral different Intel processors.1 Note that current systems
provide a very large number of possible events to monitor.
The “right” set of events for diagnosing a given problem or
predicting the performance of an application mix is difficult
to find even for an expert, and the trend is getting worse.

We propose an alternative approach, and present the early
design of Glatt, a service which uses hardware performance
counters to detect application interference online and pro-
vides dynamic feedback to parallel runtime systems by rec-
ommending different thread placements or changes in the
degree of requested parallelism. Glatt’s novelty lies in the

1Numbers are generated from data files released by Intel,
available at https://download.01.org/perfmon/.

fact that it automatically learns which combinations of hard-
ware events on a given machine provide the best predictors
of performance. This allows Glatt to run on a new machine
out of the box, without needing manual tuning or expert
knowledge.

The rest of the paper is organized as follows: In the next
section (§2), we discuss the motivation for our work and sur-
vey related approaches. In Section 3, we show the challenges
involved in building Glatt. Section 4 presents case studies
of how performance events can be used to characterize in-
terference. Finally, we discuss the design of Glatt (§5) and
conclude in Section 6.

2. BACKGROUND
Hardware performance counters are available for all major
hardware architectures and enabling them typically adds lit-
tle overhead [7, 48] to the system. Therefore, using such
counters to gain insights about the system is intriguing as it
can be done online, without noticeably affecting the perfor-
mance of applications.

Performance counters have been used in the past to ad-
dress a wide range of problems: Detailed modeling of scien-
tific applications [11,32,47], anomaly detection and problem
diagnosis in production systems [7,8], and detection of secu-
rity exploits [20]. Wang et al. showed that compilers can use
performance counters to find optimal configurations by per-
forming automatic profiling runs [43]. In addition, counters
have found applications for minimizing energy consumption
inside machines [30, 39].

Shared units such as caches, memory controllers, and SMT
threads may negatively impact performance if threads that
are executed together contend for those resources. A vast
amount of research has been invested to develop contention-
aware scheduling algorithms [51]. Such algorithms employ,
for example, the LLC miss rate as a simple heuristic for con-
tention [25, 50]. While cache contention can be addressed
with recent technologies such as Intel’s Cache Allocation
Technology (CAT) [22], there is no corresponding solution
for memory bandwidth partitioning. Such isolation mea-
sures can significantly increase the utilization of data cen-
ters [28]. However, they require complex online modeling
in the OS to make an informed decision. Models relying
on performance counters exist for predicting the cache size
of applications or how threads will behave when sharing a
cache [6, 13, 40]. Often those models rely on specific hard-
ware events not available in every architecture [51]. This is
a shortcoming which many of the presented approaches suf-
fer from. Therefore, an OS needs to determine the model
it uses based on the hardware it is running on. An alterna-
tive technique is to simply monitor the instructions per cycle
(IPC) metric by considering data from previous runs to de-
tect and terminate straggler processes in a data center [49].
Aside from caches, CPU features such as SMT can lead to
performance improvements for some workloads but add few
benefits for others [37]. Lo et al. avoid co-location of differ-
ent workloads on the same core or SMT thread for reasons
of interference [28].

All of the techniques described so far focus on the re-
source management and scheduling on an operating system
level. However, the increasing parallelism inside machines
and parallel programming models have led to a number of
runtimes that do fine-grained scheduling of threads and mem-
ory management on their own: OpenMP [33] parallelizes
for loops by dividing them into chunks of independent work
items, which a set of OS-level threads then processes con-
currently. The Cilk [18] and ForkJoin [34] programming
models use task queues which are served by a set of OS-
level threads. Virtual machines [31] and containers simi-
larly need to make fine-grained scheduling decisions on their
own. Such runtime schedulers can benefit from performance
counter information to make informed thread placement de-
cisions, or use the information to vary the parallelism dy-
namically at runtime. However, the current abstractions pro-
vided to user-level applications today typically target de-
velopers that want to do fine-grained performance analy-
sis [10, 24, 27, 35, 46]. Such tools build on lower level ab-
stractions [36, 44], but they are in turn cumbersome to pro-
gram, do not abstract the hardware in a sufficient way, and
are limited by the flexibility and number of counters pro-
vided by the hardware. Runtimes that could potentially ben-
efit from such information would have to implement a large
amount of additional logic in order to make sense of the data
and gain any benefits. In addition, we argue that the perfor-
mance monitoring should be done at a global, OS level in
order to benefit from an omniscient view and be able to pro-
vide this information to various co-existing runtimes. We
discuss the challenges involved in such a system in more de-
tail in §3.

The mechanisms to exchange information between the OS
and user-level runtimes have been around for a long time:
Scheduler activations [3] use upcalls to inform the user-level
runtime of processor reallocations and completed I/O re-
quests. Tessellation [14] schedules cells (a set of CPU cores,
memory pages, etc.) and uses a Resource Allocation Broker
to distribute resources to cells and adjusts them online by
using system-wide metrics such as cache misses and energy
measurements and requesting progress reports from applica-
tions.

3. CHALLENGES
In this section, we first explain in more detail how hard-

ware events are measured. We focus on Intel architectures,
but the process is similar on AMD and ARM architectures.
Then we discuss the challenges involved in building Glatt,
an online hardware event monitoring system.

3.1 Programming performance counters
The interface for hardware performance counters on In-

tel’s x86 machines is relatively straightforward. First, one
has to choose an event from a set of predetermined microar-
chitectural events as defined in the Intel SDM [23]. Such
events include, for example, cache misses on various levels,
page walks, memory bandwidth utilization, and TLB misses.
Next, a performance counter needs to be programmed to

measure the corresponding event. Recent Intel processors
have three fixed counters (which can only measure specific
events such as clock cycles and retired instructions) and eight
programmable counters per core (four per SMT thread if
SMT is enabled). The OS uses programmable counters to
monitor a specific event by writing to model specific regis-
ters (MSR) with the correct event code and umask value. Af-
terwards, the OS can enable, disable, and reset counters by
reading and writing MSR registers. Certain events can only
be measured on a subset of the available counters. In addi-
tion, Intel supports a Precise Event Based Sampling (PEBS)
facility which allows saving the CPU state (i.e., register val-
ues, addresses for a load/store, etc.) into a buffer in case a
specific event occurs. PEBS is similar to Lightweight Pro-
filing (LWP) in AMD processors. Linux provides a more
generic interface for accessing performance counters in form
of the perf_event_open [44] system call. It enables
counters to be accessed through file descriptors and allows
applications to control them with ioctl commands. In ad-
dition, it supports generic, architecture independent event
descriptors for a small subset of the commonly available
hardware events and provides the infrastructure to sample
the counters at a given rate by writing values to a ring buffer.

In the remainder of this section, we cover certain limi-
tations of performance counters which are currently not ad-
dressed in today’s mainstream operating systems and explain
how application runtimes could benefit from additional fea-
tures.

3.2 What to measure?
In Figure 1, we observe that the number of measurable

events is significantly higher than the number of available
counters (16x for Silvermont SoC and 207x for HaswellX).
Moreover, there is a high amount of variability even within
the same microarchitecture. For example, the basic Ivy-
Bridge model defines only 338 events whereas the high-end
IvyTown chips support 1423 events. In any case, the num-
ber of measurable events greatly outnumbers the number of
available counters.

The figure raises two questions: First, from all the events,
which ones should an operating system monitor to provide
feedback to a runtime system, and secondly, how should
this subset be multiplexed on the limited set of performance
counters.

Event selection.
The problem of selecting the right subset of events arises

from the fact that there are simply too many events. An
OS does not know what subset is relevant for a given archi-
tecture or workload. To make matters worse, events differ
between models and microarchitectures, let alone different
vendors. Since understanding the various events is challeng-
ing even for an expert programmer simply optimizing code,
it would be extremely difficult for an OS to generalize across
all architectures. Although the domain knowledge about rel-
evant events could potentially be encoded in a set of OS
policies for a given architecture, such an approach does not
scale. However, previous work has shown that certain events

are highly correlated and successfully applied statistical pro-
cedures to filter out correlated events to reduce the set of 120
potentially measurable events to 34 in an ARMv7 chip [41].

Limited performance counters.
Even when only measuring linearly uncorrelated variables,

the number of available counters may still not be sufficient.
In the next section (§4), we will show how the detection of
interference on different levels of caches and memory band-
width alone already requires measuring of up to 10 events
simultaneously. Techniques that multiplex counters to mea-
sure several events [5, 29] exist and are supported for exam-
ple by PAPI [10]. Such techniques rely on statistical sam-
pling by reprogramming a single counter with multiple dif-
ferent events during execution. MPX [29] analyzes the ac-
curacy of such techniques and shows that in many cases, the
introduced error is negligible.

3.3 Phase detection
Interactive applications, databases, and scientific simula-

tions usually have different phases. For instance, consider
a scientific workload that first loads data over the network
or from disk, serializes the data into an in-memory data rep-
resentation, and finally performs computations. While the
first phase typically generates a large number of I/O requests
and has low CPU utilization, the situation is reversed when
data has been read into memory. Thread and memory alloca-
tion policies may vary according to phases. The problem is
aggravated with interactive applications or databases where
user-defined queries typically start a chain of events, which
then results in different microarchitectural patterns. It makes
sense for an interaction between an OS and the runtime (e.g.,
to decide on data or thread placement) to take place at the be-
ginning of such a phase and not towards the end. An OS can
detect such phases automatically by using existing phase de-
tection techniques from signal processing [16] or by relying
on information from runtimes about which threads belong
together, when a certain task or query starts to be processed,
and when a phase has completed.

3.4 Storing knowledge
None of the operating systems we are aware of currently

monitor hardware events constantly by default. However, as
samples can be obtained with low overhead, we propose an
OS infrastructure which always enables the event measure-
ment facility. In addition, gathered information should be
stored in persistent storage, along with information about
the machine state at any given point in time, e.g., thread
placement. Past recordings should be retrievable by the OS
and runtimes. With today’s storage capacities, the aggre-
gated data size should not pose a problem. For example,
logging 8-byte values of 8 performance counters per core
on a 64-core machine every second will result in a data rate
of 4 KiB/s. Event logs may store data which is filtered and
compressed. Such logs can in turn help predict the perfor-
mance of future executions through regression analysis, or
help detect anomalies due to interference and pass that in-
formation back to application runtimes. Furthermore, we

also envision such an infrastructure as a service for devel-
opers. It forms a basis for tools to detect anomalies in the
form of bugs or performance issues (e.g., a sudden increase
in cache miss rates caused by misaligned data structures) for
subsequent versions of an application under development.
Research operating systems have already explored the idea
of a knowledge base and reasoning engine as part of the
OS: Barrelfish [42] uses a System Knowledge Base (SKB)
that stores information about the machine (including cores,
NUMA regions, physical memory ranges, and device infor-
mation). The information is in part encoded statically as
hard-coded facts along with dynamically gathered informa-
tion at boot and runtime and can be queried by applications
and OS services [38].

3.5 Data analysis
In order to make sense of the measured data on-the-fly,

an OS will have to apply well known techniques for dimen-
sionality reduction, classification, regression modeling, and
anomaly detection. Recent advances in machine learning
have given rise to many highly optimized and open source
software libraries [4,12,19]. They normally include efficient
algorithms for the previously mentioned problems. Compu-
tations are often sped up by making use of accelerators such
as GPUs. As part of this work, we plan to evaluate which
algorithms work best in our context and how such libraries
can be integrated in an operating system. While the num-
ber of events/features measured using performance counters
is relatively small compared to traditional machine learning
problem inputs, latency is critical in an operating system for
short-lived jobs. Also, Glatt’s computations should ideally
happen in the background without interfering with applica-
tions.

3.6 Application feedback
Finally, Glatt should be able to exploit the available data

and give useful feedback to multiple runtime systems run-
ning concurrently on a machine. The challenge lies in how
such information should be presented such that it can ac-
tually be leveraged by existing runtime systems with few
modifications to the runtime logic itself. In our initial effort,
we focus on detecting interference patterns and informing
applications about such cases, along with recommendations
for better thread placement decisions. In the future, we also
plan to explore the ability to give better predictions for the
degree of parallelism an elastic runtime system should use in
order to meet SLA requirements, without excessively over-
provisioning resources. Elastic runtime systems refer to run-
times such as OpenMP or Cilk, which are able to quickly
adapt to dynamic changes in the number of available cores.

In the next section, we will analyze how we can use per-
formance counters to detect interference and how it can af-
fect existing runtime systems and program execution times.

4. CASE STUDIES: INTERFERENCE
Modern machines often consist of several multicore pro-

cessors. Resources commonly contended by processes in-
clude memory bandwidth as well as L3 and L2 cache. In

1 1 1 1 1 1 1 1 1 1 1 1

Processor 1

NUMA 1 NUMA 2

1 1 1 1 1 1 1 1 1 1 1 1

Processor 2

NUMA 3 NUMA 4

2 2 2 2 2 2 2 2 2 2 2 2

Processor 3

NUMA 5 NUMA 6

2 2 2 2 2 2 2 2 2 2 2 2

Processor 4

NUMA 7 NUMA 8

1 1 1 2 2 2 1 1 1 2 2 2

Processor 1

NUMA 1 NUMA 2

1 1 1 2 2 2 1 1 1 2 2 2

Processor 2

NUMA 3 NUMA 4

1 1 1 2 2 2 1 1 1 2 2 2

Processor 3

NUMA 5 NUMA 6

1 1 1 2 2 2 1 1 1 2 2 2

Processor 4

NUMA 7 NUMA 8

Figure 2: Thread assignment strategies used in Fig. 3 (left)
and Fig. 4 (right).

this section, we present two case studies where performance
counters can aid the identification of root causes of interfer-
ence. In particular, we show processes which exhibit con-
tention for memory controllers and L3 cache.

Counters were read with perf_event_open in sam-
pling mode at a frequency of 100 samples per second for
both case studies. The samples were then aggregated in 1-
second intervals.

4.1 Memory interference
Memory interference is caused by applications with work-

ing sets unable to fit inside the CPU cache and/or poor local-
ity of reference. Typically, such applications have higher L2
and L3 miss rates which result in an increased number of
main memory accesses. This in turn can lead to contention
on memory controllers and/or interconnect paths.

To show the effects of memory interference, we measured
memory bandwidth of the PageRank (PR) [9] implementa-
tion as provided by Green-Marl [21] on a machine with four
AMD Opteron 6174 processors and 128 GiB of RAM run-
ning Linux 4.1.12. Every processor comprises two 6-core
dies, where each die is a separate NUMA node and has its
own L3 cache and memory controller.

Memory bandwidth was calculated using a formula ob-
tained from an AMD white paper [17]. The event “DRAM
Accesses” was used to count memory accesses [1].

We ran two benchmarks: (1) one instance of PR running
alone and (2) two instances of PR running simultaneously.
Each instance was configured to spawn 24 threads and used a
graph based on the Twitter social network [26]. The threads
were pinned to cores during execution to allocate memory
controllers and avoid interference by the Linux scheduler.
We ran the experiment with two different thread allocation
strategies (Figure 2). The first strategy assigned four entire
NUMA nodes to each PR instance. For the second strategy,
each PR instance was allocated three cores on every NUMA
node.

In the first experiment, the execution time for a single PR
instance running alone is around 162 seconds, and the mea-
sured memory bandwidth is approximately 51 GiB/s (Fig-
ure 3a). If two PR instances are executed together, the execu-

0 20 40 60 80 100 120 140 160 180
Time [s]

0

20

40

60

80

100
Memory bandwidth [GiB/s]

PR

(a) A single PR instance running alone.

0 20 40 60 80 100 120 140 160 180
Time [s]

0

20

40

60

80

100
Memory bandwidth [GiB/s]

PR 1
PR 2

(b) Two PR instances running simultaneously.

Figure 3: Memory bandwidth of PR instances distributed on 4 NUMA nodes.

0 10 20 30 40 50 60 70 80 90
Time [s]

0

20

40

60

80

100
Memory bandwidth [GiB/s]

PR

(a) A single PR instance running alone.

0 20 40 60 80 100 120 140 160 180
Time [s]

0

20

40

60

80

100
Memory bandwidth [GiB/s]

PR 1
PR 2

(b) Two PR instances running simultaneously.

Figure 4: Memory bandwidth of PR instances distributed on 8 NUMA nodes.

tion time and memory bandwidth remain roughly constant.
The two instances do not interfere with each other since the
threads of instances are assigned to separate sockets.

In the second experiment, each PR instance receives half
of every NUMA node, i.e., each instance gets three cores
on all eight dies. We observe the execution time of a sin-
gle PR instance is nearly halved (Figure 4a). We attribute
this to the fact that we now have the ability to make use of
twice the number of memory controllers in the system. We
see that the memory bandwidth is roughly 21 GiB/s higher
than in Figure 3a. However, once we execute two PR in-
stances simultaneously on the machine (with each instance
now using 3 cores per NUMA node), we see that the exe-
cution time goes up to approximately 176 seconds and the
memory bandwidth decreases to around 52 MiB/s. Assum-
ing the two instances share memory controllers fairly, each
instance receives the equivalent of 0.5×8 = 4 memory con-
trollers. The execution time and memory bandwidth attained

by instances therefore appears to be dependent on the num-
ber of available memory controllers.

4.2 Last-level cache
In this case study we paired an application with good lo-

cality of reference and an application with poor locality to
demonstrate contention on the last-level cache.

We ran matrix multiplication (MM) with PageRank (PR)
on a machine with two Intel Xeon E5-2670 v2 processors
and 256 GiB of RAM running Linux 4.2.0. For matrix mul-
tiplication, we used the ATLAS library which provides an
implementation of BLAS for C [45] and the matrix Math-
Works/tomography from the University of Florida Sparse
Matrix Collection [15]. The matrix was multiplied by it-
self for 1000 iterations. The PR application is identical to
the one in the previous case study and used the same Twit-
ter graph [26], except it was configured to use eight threads.
Each PR thread and the MM process were pinned to separate

0 10 20 30 40 50
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
L3 cache miss rate

PR
MM

(a) PR and MM instances running alone.

0 10 20 30 40 50
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
L3 cache miss rate

PR
MM

(b) PR and MM instances running simultaneously.

Figure 5: L3 cache miss rates of PR and MM instances.

cores on the same processor. The following two events were
used to calculate the L3 cache miss rate [23]:

• LONGEST_LAT_CACHE.REFERENCE
• LONGEST_LAT_CACHE.MISS

The L3 cache miss rates of the applications running alone
are shown in Figure 5a. MM and PR have average cache
miss rates of 0.0008 and 0.57, respectively. The low miss
rate for the former can be explained by the fact the input and
output matrices are both approximately 2 MB each and fit
into the processor’s L3 cache (25 MB). In contrast, PR has a
much higher cache miss rate which explains consumption of
memory bandwidth in the previous case study.

The results of the applications running side by side are
presented in Figure 5b. The cache miss rate of MM dra-
matically increases to 0.57 whereas the rate for PR remains
steady at 0.58. However, the elevated cache miss rate re-
sulted only in an 8.9% increase in execution time for MM.
Because the overall execution time of MM is shorter than
PR, we restarted MM after the program finished in Figure 5b.
The continued execution is indicated by the gray line.

At a glance, the increases in the cache miss rate and execu-
tion time appear to be disproportionate; however, examina-
tion of the L2 cache miss rate clarifies this—it is relatively
low at 0.07. As only a small number of requests reach L3
cache, an increase in L3 cache misses has limited effect on
the execution time.

The following events were required to calculate the L2
cache miss rate [23]:

• L2_RQSTS.ALL_DEMAND_DATA_RD
• L2_RQSTS.DEMAND_DATA_RD_HIT
• L2_RQSTS.ALL_RFO
• L2_RQSTS.RFO_MISS
• L2_RQSTS.ALL_CODE_RD
• L2_RQSTS.CODE_RD_MISS

Unlike the L3 cache, there is no event which counts all the
different types of L2 references and misses collectively, so
they must be measured separately.

As mentioned before, Intel processors generally only have
eight programmable performance counters per core. Conse-
quently, the data for the L2 cache was collected in a separate
run with identical configuration.

4.3 Discussion
The identification of interference is non-trivial. First of

all, it requires domain knowledge about various CPU ar-
chitectures. To illustrate, Intel and AMD provide different
events as they are not standardized; events even vary be-
tween different generations of processors in the same family.
In §4.2, we saw that big changes in one observed event had
little impact on the overall program performance due to in-
teractions with the rest of the system. Therefore, it is crucial
to consider complex combinations of events for anomaly de-
tection.

While most processors support a common set of frequently
used events, they are not always identical. For instance, an
event which counts the number of LLC misses may or may
not include prefetches. Users must be aware of these details
to obtain correct performance data. Furthermore, processors
often lack events which are integral to performance analysis.
For example, examination of the code of Intel Performance
Counter Monitor [46] reveals it uses uncore events which
monitor the integrated memory controller to measure mem-
ory bandwidth. The reliance on uncore events is a significant
drawback since we cannot determine the memory bandwidth
of a specific core or thread.

Even without the aforementioned issues, the selection of
events to measure is a challenge in itself. This is further
complicated because it does not scale if the process has to be
repeated for every new processor model. However, interfer-
ence anomalies do generate specific patterns which a learn-
ing algorithm can learn in order to do classification without
detailed knowledge about specific events.

5. DESIGN
We now briefly describe the early design of Glatt and ex-

plain how we plan to solve the challenges listed in §3. On a
high-level the design of Glatt comprises three parts: (a) in-
terference detection, (b) interference classification, and (c)
the recommendation of thread placements for runtimes.

A key design decision we take in Glatt is to assume no
prior knowledge about the available hardware events on a
given machine, except for how to configure and read coun-
ters, and which event codes are supported on the machine.
While this appears restrictive, it greatly simplifies porting
Glatt to different architectures or CPU models and removes
the need to encode domain knowledge about event seman-
tics in the Glatt code. The cost of this decision is that we
need a training set for any given problem we want to detect
(e.g., interference). However, we argue that this training set
can be automatically evaluated using an appropriate set of
benchmark programs, and need only be done once for any
given machine. For example, in our initial test set we used
five benchmark programs: PageRank, sort, matrix multipli-
cation, hop distance, and single-source shortest path. Next,
we ran these algorithms alone and pairwise on a machine
with different thread allocation strategies as well as differ-
ent working set sizes to try and force certain interference
behaviors. We used repeated runs of the same settings to
measure all available hardware events for our initial study
and recorded the overall program performance. With the
recorded data set we try to identify a set of events that is
relevant for a given machine and benchmark. Initially, the
event space can be reduced using statistical methods such as
computing the correlation coefficients or principal compo-
nent analysis to find a set of uncorrelated events.

Although a number of use cases exist for Glatt, we focus
on detecting destructive performance interference between
parallel runtimes, and providing corresponding feedback to
applications. A first requirement for this is a useful measure
of application performance itself. One option is to compare
instructions per cycle (IPC) with previous runs of the same
application and/or thread group. IPC seems to work well
as a performance benchmark for certain workloads [49] but
others find that it does not necessarily correlate with how
well an application is doing [2]. A more reliable approach
would be to modify the application or runtime to explicitly
inform Glatt periodically about progress. To identify spe-
cific types of interference, our initial approach classifies the
sample runs measured in our training set with the appropri-
ate type. Online detection is then achieved by leveraging
statistical classifier algorithms like support vector machines
to identify the type of interference at runtime. The challenge
is to generate a training set that provides accuracy across
a wide range of different interference patterns such as con-
tention for LLC, bandwidth, and SMT threads and to make
the training set relatively independent of the architecture.
Glatt will implement an upcall mechanism to inform runtime
systems about potential interference and recommendations
for thread placement changes.

For a complete system, we plan to record any data mea-

sured by default and make it available to the system through
log files with additional metadata (e.g., per process infor-
mation, binary names, etc.). Ideally, this knowledge can be
be taken into consideration to improve the classification and
decision algorithms of the given system in the future. Fi-
nally, typical programs have several phases, unlike bench-
mark programs in a training set. While several algorithms
already exist to detect program execution phase changes, ini-
tially we will rely on the runtime systems’ domain knowl-
edge to inform Glatt about different phases and the rela-
tionship between threads (e.g., which threads form a parallel
task). Automatically detecting groups of interacting threads
is an interesting problem, but out of scope at this stage.

6. CONCLUSION
In this paper, we have shown how appropriately-chosen

measurements of hardware events can be used to predict, and
minimize complex interference between parallel runtimes on
a multicore machine.

However, we have also highlighted a critical obstacle to
using this technique: The increasing complexity of the mon-
itoring facilities available on modern processors, combined
with the tremendous variation across processor families and
vendors, makes it almost impossible to portably exploit the
available information at runtime.

In response, we are pursuing a design which learns an on-
line model of the current machine, identifies measures which
are useful predictors of interference, and uses these to rec-
ommend optimal thread allocations to user-space applica-
tions.

Our ultimate goal is to extend the use of hardware perfor-
mance counters from specialized, skilled performance de-
bugging to general purpose online scheduling.

7. ACKNOWLEDGEMENTS
We thank the anonymous reviewers and our shepherd, Yun-

gang Bao, for their helpful suggestions. We would also like
to thank our university colleagues and our industry partners
Hewlett Packard Enterprise, Huawei European Research Cen-
ter, Cisco, VMware, and Oracle for their support.

8. REFERENCES
[1] Advanced Micro Devices. BIOS and Kernel Developer’s

Guide (BKDG) For AMD Family 10h Processors. April 2010.
[2] A. R. Alameldeen and D. A. Wood. IPC considered harmful

for multiprocessor workloads. IEEE Micro, 26(4):8–17, July
2006.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler activations: Effective kernel support for the
user-level management of parallelism. ACM Trans. Comput.
Syst., 10(1):53–79, Feb. 1992.

[4] Autumn. leaf: Open Machine Intelligence Framework for
Hackers. https://github.com/autumnai/leaf, Apr. 2016.

[5] R. Azimi, M. Stumm, and R. W. Wisniewski. Online
performance analysis by statistical sampling of
microprocessor performance counters. In Proceedings of the
19th Annual International Conference on Supercomputing,
ICS ’05, pages 101–110, 2005.

[6] R. Azimi, D. K. Tam, L. Soares, and M. Stumm. Enhancing
operating system support for multicore processors by using
hardware performance monitoring. SIGOPS Operating
Systems Review, 43(2):56–65, Apr. 2009.

[7] K. A. Bare, S. Kavulya, and P. Narasimhan. Hardware
performance counter-based problem diagnosis for
e-commerce systems. In 2010 IEEE Network Operations and
Management Symposium, pages 551–558, Apr. 2010.

[8] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. Peterson.
Lightweight, high-resolution monitoring for troubleshooting
production systems. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’08, pages 103–116, 2008.

[9] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks and
ISDN Systems, 30(1-7):107–117, Apr. 1998.

[10] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci.
A scalable cross-platform infrastructure for application
performance tuning using hardware counters. In Proceedings
of the 2000 ACM/IEEE Conference on Supercomputing, SC
’00, 2000.

[11] V. C. Cabezas and M. Püschel. Extending the roofline model:
Bottleneck analysis with microarchitectural constraints. In
2014 IEEE International Symposium on Workload
Characterization, IISWC 2014, Raleigh, NC, USA, October
26-28, 2014, pages 222–231, 2014.

[12] Caffe. Caffe: Deep learning framework .
http://caffe.berkeleyvision.org/, Apr. 2016.

[13] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
inter-thread cache contention on a chip multi-processor
architecture. In Proceedings of the 11th International
Symposium on High-Performance Computer Architecture,
HPCA ’05, pages 340–351, 2005.

[14] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moretó,
D. Chou, B. Gluzman, E. Roman, D. B. Bartolini, N. Mor,
K. Asanović, and J. D. Kubiatowicz. Tessellation:
Refactoring the OS Around Explicit Resource Containers
with Continuous Adaptation. In Proceedings of the 50th
Annual Design Automation Conference, DAC ’13, pages
76:1–76:10, 2013.

[15] T. A. Davis and Y. Hu. The University of Florida Sparse
Matrix Collection. ACM Transactions on Mathematical
Software, 38(1):1:1–1:25, Dec. 2011.

[16] A. S. Dhodapkar and J. E. Smith. Comparing program phase
detection techniques. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 36, 2003.

[17] P. J. Drongowski. Basic Performance Measurements for
AMD Athlon

TM
64, AMD Opteron

TM
and AMD Phenom

TM

Processors.
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2012/10/Basic_Performance_Measurements.pdf, September
2008.

[18] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language. In In
Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1998.

[19] Google. TensorFlow: Open Source Software Library for
Machine Intelligence. https://www.tensorflow.org/, Apr.
2016.

[20] N. Herath and A. Fogh. These Are Not Your Grand Daddys
CPU Performance Counters.
https://www.blackhat.com/docs/us-15/materials/us-15-
Herath-These-Are-Not-Your-Grand-Daddys-CPU-
Performance-Counters-CPU-Hardware-Performance-

Counters-For-Security.pdf, Aug. 2015.
[21] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl:

A DSL for Easy and Efficient Graph Analysis. In
Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 349–362, 2012.

[22] Intel. Improving Real-Time Performance by Utilizing Cache
Allocation Technology. http://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/cache-
allocation-technology-white-paper.pdf, Apr. 2015.

[23] Intel Corporation. Intel R© 64 and IA-32 Architectures
Software Developer’s Manual. April 2016.

[24] A. Kleen. Intel PMU profiling tools.
https://github.com/andikleen/pmu-tools, Apr. 2016.

[25] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using
OS Observations to Improve Performance in Multicore
Systems. IEEE Micro, 28(3):54–66, May 2008.

[26] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a
social network or a news media? In WWW ’10: Proceedings
of the 19th international conference on World wide web,
pages 591–600, 2010.

[27] D. Levinthal. PMU event analysis package.
https://github.com/David-Levinthal/gooda, Apr. 2016.

[28] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: Improving resource efficiency at
scale. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA ’15, pages
450–462, 2015.

[29] J. M. May. MPX: Software for multiplexing hardware
performance counters in multithreaded programs. In Parallel
and Distributed Processing Symposium., Proceedings 15th
International, Apr. 2001.

[30] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious
scheduling for energy efficiency on multicore processors. In
Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, pages 153–166, 2010.

[31] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
Managing Performance Interference Effects for QoS-aware
Clouds. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, pages 237–250, 2010.

[32] G. Ofenbeck, R. Steinmann, V. C. Cabezas, D. G.
Spampinato, and M. Püschel. Applying the roofline model.
In 2014 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2014, Monterey,
CA, USA, March 23-25, 2014, pages 76–85, 2014.

[33] OpenMP Architecture Review Board. OpenMP application
program interface version 4.5, Nov. 2015.

[34] Oracle. Fork/Join. https://docs.oracle.com/javase/tutorial/
essential/concurrency/forkjoin.html, February 2016.

[35] T. Roehl. likwid: Performance monitoring and benchmarking
suite. https://github.com/RRZE-HPC/likwid, Apr. 2016.

[36] J. C. Saez, J. Casas, A. Serrano, R. Rodríguez-Rodríguez,
F. Castro, D. Chaver, and M. Prieto-Matias. Euro-Par 2015:
Parallel Processing Workshops: Euro-Par 2015
International Workshops, Vienna, Austria, August 24-25,
2015, Revised Selected Papers, chapter An OS-Oriented
Performance Monitoring Tool for Multicore Systems, pages
697–709. Springer International Publishing, 2015.

[37] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra, and
R. Biswas. The impact of hyper-threading on processor
resource utilization in production applications. In
Proceedings of the 2011 18th International Conference on
High Performance Computing, HIPC ’11, pages 1–10, 2011.

[38] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham,

T. Harris, and R. Isaacs. Embracing diversity in the
Barrelfish manycore operating system. In Proceedings of the
Workshop on Managed Many-Core Systems, June 2008.

[39] K. Singh, M. Bhadauria, and S. A. McKee. Real time power
estimation and thread scheduling via performance counters.
SIGARCH Computer Architecture News, 37(2):46–55, July
2009.

[40] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: Approximating L2 miss rate curves on
commodity systems for online optimizations. In Proceedings
of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XIV, pages 121–132, 2009.

[41] S. J. Tarsa. Machine Learning for Machines: Data-Driven
Performance Tuning at Runtime Using Sparse Coding. PhD
thesis, 2015.

[42] The Barrelfish Project. Barrelfish Operating System.
www.barrelfish.org, Apr. 2016.

[43] Z. Wang and M. F. O’Boyle. Mapping parallelism to
multi-cores: A machine learning based approach. In
Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP
’09, pages 75–84, 2009.

[44] V. Weaver. Linux Programmer’s Manual:
PERF_EVENT_OPEN(2). http://man7.org/linux/man-
pages/man2/perf_event_open.2.html, May 2015.

[45] R. C. Whaley and J. Dongarra. Automatically tuned linear
algebra software. In SuperComputing 1998: High

Performance Networking and Computing, 1998.
[46] T. Willhalm, R. Dementiev, and P. Fay. Intel Performance

Counter Monitor. https://software.intel.com/en-
us/articles/intel-performance-counter-monitor, Apr. 2016.

[47] S. Williams, A. Waterman, and D. Patterson. Roofline: An
insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76,
Apr. 2009.

[48] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of
performance counter measurements. In Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, pages 23–32, April 2009.

[49] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes. CPI2: CPU performance isolation for shared
compute clusters. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages
379–391, 2013.

[50] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
shared resource contention in multicore processors via
scheduling. In Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XV, pages
129–142, 2010.

[51] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and
M. Prieto. Survey of scheduling techniques for addressing
shared resources in multicore processors. ACM Computing
Surveys, 45(1):4:1–4:28, Dec. 2012.

